题目内容
-2的倒数是( )
A. - B. C. -2 D. 2
已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.
(1)如图1,求⊙O1半径及点E的坐标.
(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF与AC之间是否存在某种等量关系?请写出你的结论,并证明.
(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG的长(不写过程),若变化自画图说明理由.
抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为( )
A. 向左平移1个单位 B. 向左平移2个单位
C. 向右平移1个单位 D. 向右平移2个单位
如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为______.
如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )
A. 180°﹣2α B. 2α C. 90°+α D. 90°﹣α
连接多边形任意两个不相邻顶点的线段称为多边形的对角线.
(1)
对角线条数分别为 、 、 、 .
(2)n边形可以有20条对角线吗?如果可以,求边数n的值;如果不可以,请说明理由.
(3)若一个n边形的内角和为1800°,求它对角线的条数.
如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片 ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、 AC于点E、G.连接GF.则下列结论错误的是( )
A. ∠AGD=112.5° B. 四边形AEFG是菱形 C. tan∠AED=2 D. BE=2OG
威远人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?
已知△ABC的三个顶点A(5,6)、B(7,2)、C(4,3),先将△ABC向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段△A′B′C′,则点A的对应点A′的坐标为( )
A. (2,1) B. (3,1) C. (2,3) D. (3,3)