题目内容
从1开始,连续的自然数相加,它们的和的倒数情况如下表:
(1)根据表中规律,求
=______;
(2)根据表中规律,则
=______;
(3)求
+
+
+
的值.
| 分母中加数的个数 | 和的倒数 |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| … | … |
解:(1)按照下表的规律,可以
=2(
-
)=
;
(2)根据表中规律,则
=
;
(3)由表中几个式子我们可以得出规律,即
=
=
.所以
+
+
+
=2(
+…
)=2(
)=
;
分析:根据上图的几个例子我们可以总结出规律,即根据表中规律,则
=
=
.
点评:本题属于找规律的题目,另外还需要学生对规律的灵活应用.
(2)根据表中规律,则
(3)由表中几个式子我们可以得出规律,即
分析:根据上图的几个例子我们可以总结出规律,即根据表中规律,则
点评:本题属于找规律的题目,另外还需要学生对规律的灵活应用.
练习册系列答案
相关题目
从1开始,连续的自然数相加,它们的和的倒数情况如下表:
(1)根据表中规律,求
= ;
(2)根据表中规律,则
= ;
(3)求
+
+
+
的值.
(1)根据表中规律,求
| 1 |
| 1+2+3+…+10 |
(2)根据表中规律,则
| 1 |
| 1+2+3+4+…+n |
(3)求
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+4+…+n |
| 分母中加数的个数 | 和的倒数 | ||||||||
| 2 |
| ||||||||
| 3 |
| ||||||||
| 4 |
| ||||||||
| 5 |
| ||||||||
| … | … |