题目内容
(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);
(2)求海轮在B处时与灯塔C的距离(结果保留整数).
(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
考点:解直角三角形的应用-方向角问题
专题:几何图形问题
分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;
(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.
(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.
解答:
解:(1)过C作AB的垂线,设垂足为D,
根据题意可得:∠1=∠2=42°,∠3=∠4=55°,
设CD的长为x海里,
在Rt△ACD中,tan42°=
,则AD=x•tan42°,
在Rt△BCD中,tan55°=
,则BD=x•tan55°,
∵AB=80,
∴AD+BD=80,
∴x•tan42°+x•tan55°=80,
解得:x≈34.4,
答:海轮在航行过程中与灯塔C的最短距离是34.4海里;
(2)在Rt△BCD中,cos55°=
,
∴BC=
≈60海里,
答:海轮在B处时与灯塔C的距离约为60海里.
根据题意可得:∠1=∠2=42°,∠3=∠4=55°,
设CD的长为x海里,
在Rt△ACD中,tan42°=
| AD |
| CD |
在Rt△BCD中,tan55°=
| BD |
| CD |
∵AB=80,
∴AD+BD=80,
∴x•tan42°+x•tan55°=80,
解得:x≈34.4,
答:海轮在航行过程中与灯塔C的最短距离是34.4海里;
(2)在Rt△BCD中,cos55°=
| CD |
| BC |
∴BC=
| CD |
| cos55° |
答:海轮在B处时与灯塔C的距离约为60海里.
点评:本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.
练习册系列答案
相关题目
已知实数a,b,若a>b.则正确的是( )
| A、a-5<b-5 | ||||
| B、2+a<2+b | ||||
C、
| ||||
| D、-2a<-2b |