题目内容
如图,在△ABC中,AB=AC,点P是BC边上的任意一点,PM⊥AB,PN⊥AC,垂足分别为M、N,BD是AC边上的高,BD=10,则PM+PN=_________.
=_____.
先化简,再求值: ÷(+1﹣x),其中x=2.
下列各数中,最小的数是( )
A. ﹣1 B. ﹣ C. 0 D. 1
已知△ABC中,AB=AC=BC=6.点P射线BA上一点,点Q是AC的延长线上一点,且BP=CQ,连接PQ,与直线BC相交于点D.
(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.
如图①,一次函数 y= x - 2 的图像交 x 轴于点 A,交 y 轴于点 B,二次函数 y= x2 bx c的图像经过 A、B 两点,与 x 轴交于另一点 C.
(1)求二次函数的关系式及点 C 的坐标;
(2)如图②,若点 P 是直线 AB 上方的抛物线上一点,过点 P 作 PD∥x 轴交 AB 于点 D,PE∥y 轴交 AB 于点 E,求 PD+PE 的最大值;
(3)如图③,若点 M 在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点 M的坐标.
① ② ③
三张完全相同的卡片正面分别标有数字 1,3,5,将它们洗匀后,背面朝上放在桌上.
(1)随机抽取一张,求抽到数字恰好为 3 的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,通过列表 或画树状图求所组成的两位数恰好是“51”的概率.
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是( )