题目内容
【题目】如图,已知:AB为⊙O的弦(非直径),E为AB的中点,EO的延长线与⊙O相交于C,CM∥AB,BO的延长线与⊙O相交于F,与CM相交于D.
①求证:EC⊥CD;
②当EO:OC=1:3,CD=4时,求⊙O的半径.
![]()
【答案】①证明见解析②
【解析】
①根据垂径定理不难得出OE⊥AB.又有AB∥CM,由此便可证得;
②AB∥CD,不难得出EO:OC=1:3;然后用半径分别表示出OC,OD,CD,根据勾股定理来求出半径的值.
①证明:E为弦AB(非直径)的中点,O为圆心,
∴∠OEB=90°,
∵∠ECD=∠OEB=90°,
即EC⊥CD;
②解:∵CD∥AB,EO:OC=1:3,
∴
,
设OC=BO=x,则OD=3x,又CD=4,
在Rt△OCD中,由OC2+CD2=OD2,x2+42=(3x)2,
解得:x1=
,x2=﹣
(舍去),
∴BO=
,
即⊙O的半径为
.
练习册系列答案
相关题目