题目内容

已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;

(2)求△MCB的面积S△MCB.

(1)抛物线的解析式为y=﹣x2+4x+5;(2)S△MCB= 15. 【解析】试题分析:(1)把A(﹣1,0)、C(0,5)、点(1,8)分别代入y=ax2+bx+c,得方程组,解方程组求得a、b、c的值,即可得抛物线的解析式;(2)利用函数的解析式求得点B、点M的坐标,作ME⊥y轴于点E,利用S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC即可求得△MCB的面积. (1)依题意:...
练习册系列答案
相关题目

设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只。则从中任意取一只,是二等品的概率等于 ( )

A. B. C. D.

C 【解析】 试题分析:概率的求法:概率=所求情况数与所有情况数的比. 由题意得二等品的概率,故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网