题目内容
如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为( )
A. B. C. D.
如图,在ABCD中,点E为CD的中点,点F在BC上,且CF=2BF,连接AE,AF,若AF=,AE=7,tan∠EAF=,则线段BF的长为__________.
定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如: 的图象向左平移2个单位,再向下平移1个单位得到 的图象,则是y与x的“反比例平移函数”.如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”的图象经过B、E两点.则这个“反比例平移函数”的表达式为____________;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,则写出这个反比例函数的表达式为________________ .
由几个小正方体搭成的几何体,其主视图、左视图相同,均如图所示,则搭成这个几何体最少需要__________个小正方体.
如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)
某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .
小华和小军做摸球游戏,A袋中装有编号为1,2,3的三个小球,B袋中装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若B袋摸出的小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.
计算﹣(﹣3a2b3)4的结果是( )
A.81a8b12 B.12a6b7 C.﹣12a6b7 D.﹣81a8b12