题目内容

已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.

(1)在AB边上求作点P,使PC+PD最小:

(2)求出(1)中PC+PD的最小值.

(1)作法见解析;(2)PC+PD的最小值为8. 【解析】试题分析: (1)作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求; (2)作D′E⊥BC于E,则EB=D′A=AD,先根据等边对等角得出∠DCD′=∠DD′C,然后根据平行线的性质得出∠D′CE=∠DD′C,从而求得∠D′CE=∠DCD′,得出∠D′CE=30°,根据30°角的直角三角形的性质求得D′C=2D′E=...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网