题目内容
先化简,再求值: ,其中
八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.
如图,从A地到B地的公路需要经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°。因城市规划的需要,将在A,B两地之间修建一条笔直的公路。
(1)求改直后的公路AB的长;
(2)问:公路改造后比原来缩短了多少千米?
(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )
A. 40° B. 60° C. 80° D. 120°
如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为点E、F.
(1)如图①,当点D在BC的什么位置时,DE=DF?并证明;
(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?请写出所有的全等三角形(不必证明);
(3)如图②,过点C作AB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.
如图,在△ABC中AC=3,中线AD=5,则边AB的取值范围是_____.
下列等式从左到右的变形,属于因式分解的是
A. (a+b)(a﹣b)=a2﹣b2 B. a2+4a+1=a(a+4)+1
C. x3﹣x=x(x+1)(x﹣1) D.
一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为______.
在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图,点D在线段BC的延长线上移动,若∠BAC=40,求∠DCE的度数.
(2)设∠BAC=m,∠DCE=n.
①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.
②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.