题目内容

(2001•温州)已知抛物线y=x2+2(k+1)x-k与x轴有两个交点,且这两个交点分别在直线x=1的两侧,则k的取值范围是   
【答案】分析:根据二次函数y=x2+2(k+1)x-k的图象与x轴有两个交点可以得到其判别式是正数,由此得到关于k的不等式,解不等式即可求出k的取值范围,再根据两个交点分别在直线x=1的两侧求出k的取值范围然后再取k的公共部分.
解答:解:∵抛物线y=x2+2(k+1)x-k与x轴有两个交点,
∴b2-4ac=[2(k+1)]2-4×1×(-k)=4(k2+3k+1)>0,
解得:k>或k<
∵两个交点分别在直线x=1的两侧,
∴可设x1<1,x2>1,
即x1-1<0,x2-1>0,
∴(x1-1)•(x2-1)<0,
即(x1x2)-(x1+x2)+1<0,
由解析式y=x2+2(k+1)x-k可得x1x2=-k,x1+x2=-2(k+1),
∴(x1x2)-(x1+x2)+1=k+3<0,
解得k<-3;
所以k的取值范围是k<-3.
点评:此题考查了抛物线与x轴交点个数与其判别式的关系,也考查了一元二次方程的根与系数的关系,其中解题时利用不等式的巧妙变形,可以快速解不等式,这也是解不等式经常采用的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网