题目内容
分析:已知∠ABC=60°,则根据三角函数求得
=
=
,又因为有公共角∠B,从而得到△BDE∽△BAC,根据对应边成比例可得到DE=
AC,同理可求得DF=
AC,EF=
AC,所以DE=DF=EF,即△DEF为等边三角形.
| BE |
| BC |
| BD |
| AB |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:连接EF,△DEF为等边三角形,由∠ABC=60°,
易得:
=
=
.
∴△BDE∽△BAC,
∴
=
=
,
∴DE=
AC.
又∵F为中点,
∴在Rt△ADC中,DF=
AC,在Rt△ACE中,EF=
AC.
所以DE=DF=EF.
即:△DEF为等边三角形.
易得:
| BE |
| BC |
| BD |
| AB |
| 1 |
| 2 |
∴△BDE∽△BAC,
∴
| DE |
| AC |
| BD |
| AB |
| 1 |
| 2 |
∴DE=
| 1 |
| 2 |
又∵F为中点,
∴在Rt△ADC中,DF=
| 1 |
| 2 |
| 1 |
| 2 |
所以DE=DF=EF.
即:△DEF为等边三角形.
点评:此题主要考查学生对相似三角形的判定和性质的应用,以及等边三角形的判定方法的理解及运用能力.
练习册系列答案
相关题目