题目内容
如图所示的两个同心圆中,大圆半径为3,小圆半径为1,则阴影部分的面积为________.
如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE绕着点A旋转,∠DAE=90°,AD=AE=6,连接BD、CD、CE,点M、P、N分别为DE、DC、BC的中点,连接MP、PN、MN,则△PMN的面积最大值为_____.
阅读下面的材料,解答后面给出的问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,+1与-1.
(1)请你再写出两个含有二次根式的代数式,使它们互为有理化因式:__________________;
这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.
(2)请仿照上面给出的方法化简:;
(3)计算:.
计算的值为( )
A.
B.
C.
D.
如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.
如图所示,已知△ABC与△CDA关于点O对称,过O作EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于点O的对应点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 5个
如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于( )
A. 2cm B. 3cm C. 4cm D. 5cm
已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.
(1)求这个一次函数的解析式.
(2)此函数的图象经过哪几个象限?
(3)求此函数的图象与坐标轴围成的三角形的面积.
已知三角形纸片ABC的面积为48,BC的长为8.按下列步骤将三角形纸片ABC进行裁剪和拼图:
第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意取一点F,在线段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;
第二步:如图2,将FH左侧纸片绕点D旋转180°,使线段DB与DA重合;将FH右侧纸片绕点E旋转180°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片.
图1 图2
(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;
(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.