题目内容
如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延 长交BC于点G,连接AG.
(1) 求证:△ABG≌△AFG;
(2) 求BG的长.
![]()
【解析】(1) ∵四边形ABCD是正方形,
∴∠B=∠D=90°,AD=AB,
由折叠的性质可知
AD=AF,∠AFE=∠D=90°,
∴∠AFG=90°,AB=AF,
∴∠AFG=∠B,
又AG=AG,
∴△ABG≌△AFG;
(2) ∵△ABG≌△AFG,
∴BG=FG,
设BG=FG=
,则GC=
,
∵E为CD的中点,
∴CF=EF=DE=3,
∴EG=
,
∴
,
解得
,
∴BG=2.
练习册系列答案
相关题目