题目内容
=( )
A.﹣1 B.1 C.﹣ D.﹣
下列分解因式正确的是( )
A.x3﹣x=x(x2﹣1)
B.x2﹣1=(x+1)(x﹣1)
C.x2﹣x+2=x(x﹣1)+2
D.x2+2x﹣1=(x﹣1)2
二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是( )
①a>0;②b>0;③c<0;④b2﹣4ac>0.
A.1 B.2 C.3 D.4
抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为 .
函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )
A. B.
C. D.
如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是( )
A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3
如图,抛物线y=x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.
(1)求抛物线y=x2+bx+c与直线y=kx的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.
若反比例函数y=的图象位于第二、四象限内,则m的取值范围是 .