题目内容
| 2 |
分析:连接OQ交AB于M,连接OA,则OQ⊥AB,OA⊥AQ.可证明S,P,Q,M四点共圆,故OS•OP=OM•OQ.由OM•OQ=OA2=2,则可求得OS•OP的值.
解答:
解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.
∵∠QMP=∠QSP=90°,
∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.
又∵OM•OQ=OA2=2,
∴OS•OP=2.
故答案为:2.
∵∠QMP=∠QSP=90°,
∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.
又∵OM•OQ=OA2=2,
∴OS•OP=2.
故答案为:2.
点评:本题考查了切割线定理和射影定理,是基础知识要熟练掌握.
练习册系列答案
相关题目