题目内容
如图,在⊙O中,AO∥CD,∠1=30°,弧AB的长为3300π千米,则⊙O的半径用科学记数法表示为 千米.
(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2=( )
A.70° B.80° C.110° D.120°
在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是 (结果保留π).
小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.
(1)小林的速度为 米/分钟,a= ,小林家离图书馆的距离为 米;
(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;
(3)小华出发几分钟后两人在途中相遇?
解方程组:
代数式有意义,则x的取值范围是 .
【问题提出】如图1,四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.
【尝试解决】
旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.
(1)如图2,连接 BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB′,则△BDB′的形状是 .
(2)在(1)的基础上,求四边形ABCD的面积.
[类比应用]如图3,四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四边形ABCD的面积.
某同学6次引体向上的测试成绩(单位:个)分别为16、18、20、17、16、18,这组数据的中位数是 .
(7分)已知一次函数的图象经过点A(1,1)和点B(2,﹣1),求这个一次函数的解析式.