题目内容

已知实数a,b分别满足3a4+2a2-4=0和b4+b2-3=0,求
4a4
+b4
的值.
分析:先根据已知条件,利用求根公式求得a2、b2的值,然后将其代入
4
a4
+b4
并解答.
解答:解:由3a4+2a2-4=0,得a2=
-2±
4-4×3×(-4)
2×3
,即a2=
-1±
13
3

∵a2≥0,
∴a2=
-1+
13
3

由b4+b2-3=0,得b2=
-1±
1-4×1×(-3)
2×1
,即b2=
-1±
13
2

又∵b2≥0,
∴b2=
-1+
13
2

4
a4
+b4

=
4
(
-1+
13
3
)2
+(
-1+
13
2
)2

=
18
7-
13
+
7-
13
2

=
18×(7+
13
)
(7-
13
)(7+
13
)
+
7-
13
2

=
7+
13
2
+
7-
13
2

=7,
4
a4
+b4
=7.
点评:本题主要考查了一元二次方程的求根公式及分式的化简求值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网