题目内容
【题目】如图,正方形
中,
是对角线
上一点,过
点作矩形
,其中点
在
上,点
在
上.
![]()
求
的度数;
试说明
,
;
若正方形的面积为
,求矩形
的周长.
【答案】(1)45°;(2)见解析; (3) 10cm.
【解析】
(1)直接根据正方形的性质即可得出结论;(2)根据四边形ABCD是正方形可知,EG∥BC,EF∥CD,所以∠DEG=45°,∠BFE=∠DGE=90°,故△DEG与△EBF是等腰直角三角形,故EG=DG,EF=BF;(3)先根据正方形的面积为25cm2求出边长,由(1)知EG=DG,EF=BF,所以EG+CG=DC,由此可得出结论.
解:
∵四边形
是正方形,
为对角线,
∴
;
∵四边形
是正方形,
∴
,
∵四边形
是矩形,
∴
,
,
∴
,
,
∴
与
是等腰直角三角形,
∴
,
;
∵正方形的面积为
,
∴
,
∵由
知
,
,
∴
,
∴矩形
的周长
.
练习册系列答案
相关题目