题目内容
(1)观察下列各式:
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,…
(2)请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
=
-
-
.
(3)请利用上述规律计算:(要求写出计算过程)
+
+
+…+
+
(4)请利用上述规律,解方程
+
+
+
+
=
.
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 12 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 20 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 30 |
| 1 |
| 5×6 |
| 1 |
| 5 |
| 1 |
| 6 |
(2)请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
| 1 |
| x |
| 1 |
| x+1 |
(3)请利用上述规律计算:(要求写出计算过程)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
(4)请利用上述规律,解方程
| 1 |
| (x-4)(x-3) |
| 1 |
| (x-3)(x-2) |
| 1 |
| (x-2)(x-1) |
| 1 |
| (x-1)x |
| 1 |
| x(x+1) |
| 1 |
| x+1 |
分析:(2)观察(1),可得规律:
=
-
;
(3)由(2)中的规律,可将原式化为
-
+
-
+
-
+…+
-
,化简即可求得答案;
(4)根据(2)的规律原方程变形为
-
=
,解此方程即可求得答案.
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
(3)由(2)中的规律,可将原式化为
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
(4)根据(2)的规律原方程变形为
| 1 |
| x-4 |
| 1 |
| x+1 |
| 1 |
| x+1 |
解答:解:(2)由(1)可得:
=
-
;
(3)
+
+
+…+
+
=
-
+
-
+
-
+…+
-
=1-
=
;
(4)原方程变形为:
-
=
,
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4,
解得x=9.
经检验x=9是原方程的解.
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
(3)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(4)原方程变形为:
| 1 |
| x-4 |
| 1 |
| x+1 |
| 1 |
| x+1 |
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4,
解得x=9.
经检验x=9是原方程的解.
点评:此题考查了分式的加减运算与分式方程的解法.此题难度适中,解题的关键是得到规律:
=
-
.
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
练习册系列答案
相关题目