题目内容
计算:
(1)
+
+
;
(2)
(1+
)÷
;
(3)已知:x2+x-1=0,求x(1-
)÷(x+1)-
的值.
(1)
| 4 |
| a-2 |
| 3 |
| 2-a |
| 1 |
| a2-a-2 |
(2)
| a-4 |
| a2-9 |
| 10a-19 |
| a2-8a+16 |
| 1 |
| a-3 |
(3)已知:x2+x-1=0,求x(1-
| 2 |
| 1-x |
| x(x2-1) |
| x2-2x+1 |
分析:(1)根据分式的加减法从左到右依次计算即可;
(2)根据分式混合运算的法则先算括号里面的,再算乘除即可;
(3)先根据分式混合运算的法则把原式进行化简,再根据x2+x-1=0可得出x-1=-x2,再代入原式的化简结果进行计算即可.
(2)根据分式混合运算的法则先算括号里面的,再算乘除即可;
(3)先根据分式混合运算的法则把原式进行化简,再根据x2+x-1=0可得出x-1=-x2,再代入原式的化简结果进行计算即可.
解答:解:(1)原式=
-
+
=
+
=
+
=
;
(2)原式=
•(
+
)•(a-3)
=
•
•(a-3)
=
;
(3)原式=
•
-
=
.
∵x2+x-1=0,
∴x-1=-x2,原式=
=1
| 4 |
| a-2 |
| 3 |
| a-2 |
| 1 |
| (a-2)(a+1) |
=
| 1 |
| a-2 |
| 1 |
| (a-2)(a+1) |
=
| a+1 |
| (a-2)(a+1) |
| 1 |
| (a-2)(a+1) |
=
| a+2 |
| (a-2)(a+1) |
(2)原式=
| a-4 |
| (a+3)(a-3) |
| a2-8a+16 |
| (a-4)2 |
| 10a-19 |
| (a-4)2 |
=
| a-4 |
| (a+3)(a-3) |
| a2+2a-3 |
| (a-4)2 |
=
| a-1 |
| a-4 |
(3)原式=
| x(x+1) |
| x-1 |
| 1 |
| x+1 |
| x(x+1) |
| x-1 |
=
| -x2 |
| x-1 |
∵x2+x-1=0,
∴x-1=-x2,原式=
| -x2 |
| -x2 |
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目