题目内容

【题目】如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则 的最大值为

【答案】
【解析】解:设AD=x, =y, ∵AB=4,AD=x,
=( 2=( 2
= x2①,
∵DE∥BC,
∴△ADE∽△ABC,
=
∵AB=4,AD=x,
=
=
∵△ADE的边AE上的高和△CED的边CE上的高相等,
= = ②,
①÷②得:
∴y= =﹣ x2+ x,
∵AB=4,
∴x的取值范围是0<x<4;
∴y= =﹣ (x﹣2)2+
的最大值为
所以答案是:
【考点精析】通过灵活运用二次函数的最值和相似三角形的判定与性质,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网