题目内容
求抛物线y=
x2-
x-1的顶点坐标.
| 1 |
| 2 |
| 1 |
| 2 |
分析:根据公式法求顶点坐标,直接代入公式求出即可.
解答:解:∵a=
,b=-
,c=-1,
∴-
=-
=
,
=
=-
.
∴顶点坐标是:(
,-
).
| 1 |
| 2 |
| 1 |
| 2 |
∴-
| b |
| 2a |
-
| ||
2×
|
| 1 |
| 2 |
| 4ac-b2 |
| 4a |
4×
| ||||
4×
|
| 9 |
| 8 |
∴顶点坐标是:(
| 1 |
| 2 |
| 9 |
| 8 |
点评:此题主要考查了公式法求二次函数的顶点坐标,熟练记忆公式法:y=ax2+bx+c的顶点坐标为( -
,
),对称轴是x=-
是解题关键.
| b |
| 2a |
| 4ac-b2 |
| 4a |
| b |
| 2a |
练习册系列答案
相关题目