题目内容
求证:平行于同一条直线的两条直线平行.
已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.
(1)求证:方程有两个不相等的实数根;
(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
校园安全与每个师生、家长和社会有着切身的关系.某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟12人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数y2与时间为t(分)满足关系式y2=-4t2+48t-96(0≤t≤12).若在单个楼梯口等待人数超过80人,就会出现安全隐患.
(1)试写出七年级学生在单个楼梯口等待的人数y1(人)和从放学时刻起的时间t(分)之间的函数关系式,并指出t的取值范围.
(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.
(3)为了避免出现安全隐患,该校采取让七年级学生提前放学措施,要使单个楼梯口等待人数不超过80人,则七年级学生至少比八年级提前几分钟放学?
如图所示的工件的主视图是( )
A. B. C. D.
如图,在∠A的两边上分别取点B、C,在∠A的外部取一点P,连接PB、PC。探索∠BPC、∠A、∠ABP、∠ACP之间的数量关系。
⑴在图下横线上直接写出相应的结论;
⑵证明其中图4的结论。
如图,AD、BE为ΔABC两角平分线,则图中∠1、∠2、∠C之间的数量关系为_________。
如果, ,那么________。
如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 .
如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A. 60° B. 65° C. 55° D. 50°