ÌâÄ¿ÄÚÈÝ
ÇëÄãÀûÓÃÖ±½Ç×ø±êÆ½ÃæÉÏÈÎÒâÁ½µã£¨x1£¬y1£©¡¢£¨x2£¬y2£©¼äµÄ¾àÀ빫ʽd=
½â´ðÏÂÁÐÎÊÌ⣺
ÒÑÖª£º·´±ÈÀýº¯Êýy=
ÓëÕý±ÈÀýº¯Êýy=xµÄͼÏó½»ÓÚA¡¢BÁ½µã£¨AÔÚµÚÒ»ÏóÏÞ£©£¬µãF1£¨-2£¬-2£©¡¢F2£¨2£¬2£©ÔÚÖ±Ïßy=xÉÏ£®ÉèµãP£¨x0£¬y0£©ÊÇ·´±ÈÀýº¯Êýy=
ͼÏóÉϵÄÈÎÒâÒ»µã£¬¼ÇµãPÓëF1¡¢F2Á½µãµÄ¾àÀëÖ®²îd=|PF1-PF2|£®ÊԱȽÏÏß¶ÎABµÄ³¤¶ÈÓëdµÄ´óС£¬²¢Óɴ˹éÄɳöË«ÇúÏßµÄÒ»¸öÖØÒª¶¨Ò壨ÓüòÁ·µÄÓïÑÔ±íÊö£©£®
| (x1-x2)2+(y1-y2)2 |
ÒÑÖª£º·´±ÈÀýº¯Êýy=
| 2 |
| x |
| 2 |
| x |
½âÓÉy=
ºÍy=x×é³ÉµÄ·½³Ì×é¿ÉµÃA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¬£¨
£¬
£©¡¢£¨-
£¬-
£©£¬Ïß¶ÎABµÄ³¤¶È=4£¨2·Ö£©
¡ßµãP£¨x0£¬y0£©ÊÇ·´±ÈÀýº¯Êýy=
ͼÏóÉÏÒ»µã£¬
¡ày0=
¡àPF1=
=
=|
|£¬
PF2=
=
=|
|£¬£¨3·Ö£©
¡àd=|PF1-PF2|=||
|-|
||£¬
µ±x0£¾0ʱ£¬d=4£»µ±x0£¼0ʱ£¬d=4£®£¨3·Ö£©
Òò´Ë£¬ÎÞÂÛµãPµÄλÖÃÈçºÎ£¬Ïß¶ÎABµÄ³¤¶ÈÓëdÒ»¶¨ÏàµÈ£®£¨2·Ö£©
ÓÉ´Ë¿ÉÖª£ºµ½Á½¸ö¶¨µãµÄ¾àÀëÖ®²î£¨È¡ÕýÖµ£©ÊǶ¨ÖµµÄµãµÄ¼¯ºÏ£¨¹ì¼££©ÊÇË«ÇúÏߣ®£¨2·Ö£©
| 2 |
| x |
| 2 |
| 2 |
| 2 |
| 2 |
¡ßµãP£¨x0£¬y0£©ÊÇ·´±ÈÀýº¯Êýy=
| 2 |
| x |
¡ày0=
| 2 |
| x0 |
¡àPF1=
(x0+2)2+(
|
(x0+
|
| (x0+1)2+1 |
| x0 |
PF2=
(x0-2)2+(
|
(x0+
|
| (x0-1)2+1 |
| x0 |
¡àd=|PF1-PF2|=||
| (x0+1)2+1 |
| x0 |
| (x0-1)2+1 |
| x0 |
µ±x0£¾0ʱ£¬d=4£»µ±x0£¼0ʱ£¬d=4£®£¨3·Ö£©
Òò´Ë£¬ÎÞÂÛµãPµÄλÖÃÈçºÎ£¬Ïß¶ÎABµÄ³¤¶ÈÓëdÒ»¶¨ÏàµÈ£®£¨2·Ö£©
ÓÉ´Ë¿ÉÖª£ºµ½Á½¸ö¶¨µãµÄ¾àÀëÖ®²î£¨È¡ÕýÖµ£©ÊǶ¨ÖµµÄµãµÄ¼¯ºÏ£¨¹ì¼££©ÊÇË«ÇúÏߣ®£¨2·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿