题目内容


如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.

 


(1)证明:∵四边形ABCD是平行四边形,

∴DC=AB,DC∥AB,

∴∠ODF=∠OBE,

在△ODF与△OBE中

∴△ODF≌△OBE(AAS)

∴BO=DO;

(2)解:∵BD⊥AD,

∴∠ADB=90°,

∵∠A=45°,

∴∠DBA=∠A=45°,

∵EF⊥AB,

∴∠G=∠A=45°,

∴△ODG是等腰直角三角形,

∵AB∥CD,EF⊥AB,

∴DF⊥OG,

∴OF=FG,△DFG是等腰直角三角形,

∵△ODF≌△OBE(AAS)

∴OE=OF,

∴GF=OF=OE,

即2FG=EF,

∵△DFG是等腰直角三角形,

∴DF=FG=1,∴DG==DO,

∴在等腰RT△ADB 中,DB=2DO=2=AD

∴AD=2

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网