题目内容

4.(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,取x+y-z的最大值和最小值.

分析 直接利用绝对值的性质得出:|x+l|+|x-2|≥3,|y-2|+|y+1|≥3,|z-3|+|z+l|≥4,进而利用已知得出答案.

解答 解:∵|x+l|+|x-2|≥3,
|y-2|+|y+1|≥3,
|z-3|+|z+l|≥4,
∴(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)≥36,
∵(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,
∴|x+l|+|x-2|=3,|y-2|+|y+1|=3,|z-3|+|z+l|=4,
∴-1≤x≤2,-1≤y≤2,-1≤z≤3,
∴-5≤x+y-z≤5,
故最大值5,最小值-5.

点评 此题主要考查了绝对值,正确得出x,y,z的取值范围是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网