题目内容
2476099
2476099
.第n次操作得到△AnBnCn,则△AnBnCn的面积Sn=19n
19n
.分析:连接A1C,找出延长各边后得到的三角形是原三角形的19倍的规律,利用规律求延长第n次后的面积.
解答:
解:连接A1C;
S△AA1C=3S△ABC=3,
S△AA1C1=2S△AA1C=6,
所以S△A1B1C1=6×3+1=19;
同理得S△A2B2C2=19×19=361;
S△A3B3C3=361×19=6859,
S△A4B4C4=6859×19=130321,
S△A5B5C5=130321×19=2476099,
从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△AnBnCn,
则其面积Sn=19n•S1=19n
故答案是:2476099;19n.
S△AA1C=3S△ABC=3,
S△AA1C1=2S△AA1C=6,
所以S△A1B1C1=6×3+1=19;
同理得S△A2B2C2=19×19=361;
S△A3B3C3=361×19=6859,
S△A4B4C4=6859×19=130321,
S△A5B5C5=130321×19=2476099,
从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△AnBnCn,
则其面积Sn=19n•S1=19n
故答案是:2476099;19n.
点评:本题考查了三角形的面积.注意找到规律:Sn=19nS1是解此题的关键.
练习册系列答案
相关题目