题目内容
OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为( )
A. 80° B. 40° C. 50° D. 20°
已知抛物线y=a(x-2)2-9经过点P(6,7),与x轴交于A、B两点,与y轴交于点C,直线AP与y轴交于点D,抛物线对称轴与x轴交于点E.
(1)求抛物线的解析式;
(2)过点E任作一条直线l(点B、C分别位于直线l的异侧),设点C到直线的距离为m,点B到直线l的距离为n,求m+n的最大值;
(3)y轴上是否存在点Q,使∠QPD=∠DEO,若存在,请求出点Q的坐标:若不存在,请说明理由.
当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有( )个.
①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.
A. 1 B. 2 C. 3 D. 4
解方程:
(1)x2﹣4x+3=0.
(2)x2+2x﹣5=0.
圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是______cm2.
已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B
(1) 如图1,若AB=AC,求证:;
(2) 如图2,若AD=AE,求证:;
(3) 在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=,则AB=____________.
无论x为何值,关于x的代数式x2+2ax-3b的值都是非负数,则a+b的最大值为_______.
定义:如图1,点把线段分割成,若以为边的三角形是一个直角三角形,则称是线段的勾股点。
(1)已知点是线段的勾股点,若,求的长。
(图1) (图2) (图3)
(2)如图2,点是反比例函数上的动点,直线与坐标轴分别交与两点,过点分别向轴作垂线,垂足为,且交线段于。试证明:是线段的勾股点。
(3)如图3,已知一次函数与坐标轴交与两点,与二次函数交与两点,若是线段的勾股点,求的值。
分解因式:4a2-16=___________.