题目内容
如图,已知第一象限内的点A在反比例函数y=
的图象上,第二象限内的点B在反比例函数y=
的图象上,且OA⊥OB,cosA=
,则k的值为( )

| A.﹣3 | B.﹣4 | C.﹣ | D.﹣2 |
B
过A作AE⊥x轴,过B作BF⊥x轴,

∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO=
=
,
设AB=
,则OA=1,根据勾股定理得:BO=
,
∴OB:OA=
:1,
∴S△BFO:S△OEA=2:1,
∵A在反比例函数y=
上,
∴S△OEA=1,
∴S△BFO=2,
则k=﹣4.
故选B
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO=
设AB=
∴OB:OA=
∴S△BFO:S△OEA=2:1,
∵A在反比例函数y=
∴S△OEA=1,
∴S△BFO=2,
则k=﹣4.
故选B
练习册系列答案
相关题目