题目内容
均匀地向一个容器注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化规律如图.(图中OABC为一折线),这个容器的形状是 (填序号).
一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是( )
A.10 B.11 C.12 D.以上都有可能
如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为______.
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.
(1)计算:;
(2)求不等式组的正整数解.
若使二次根式有意义,则x的取值范围是 .
已知:如图①,在矩形ABCD中,AB=5,AD=.E为矩形外一点,且△EBA∽△ABD.
(1)、求AE和BE的长;
(2)、若将△ABE沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点E分别平移到线段AB、AD上时,直接写出相应的m的值;
(3)、如图②,将△ABE绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABE为△A′BE′,在旋转过程中,设A′E′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
已知=3,则x的值是 .
如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5,BC=6,则AD=_____________;