题目内容
在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数 .
如图,在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是( )
A、 等腰梯形 B、 矩形 C、 菱形 D、 正方形
先化简,再求值:,其中.
如图,∥,在的延长线上,若 ,,则的度数为( )
A. B. C. D.
在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O,得到的点B的坐标为_______
反比例函数y=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为( ).
A.2 B.﹣2 C.4 D.﹣4
如图,在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=-x-1上方的概率为( )
A. B. C. D.13
直线y=2x+k与y=6x-2的交点的横坐标为2,则k=____,交点为(_______).
阅读、操作与探究:
小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:
如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为 .
请仿照小亮的方法解决下列问题:
(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;
(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .