题目内容


如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.

(1)求证:PB是的切线.

(2)若PB=6,DB=8,求⊙O的半径.


(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,

∴∠OBP=∠E=90°,

∵OB为圆的半径,

∴PB为圆O的切线;

(2)解:在Rt△PBD中,PB=6,DB=8,

根据勾股定理得:PD==10,

∵PD与PB都为圆的切线,

∴PC=PB=6,

∴DC=PD﹣PC=10﹣6=4,

在Rt△CDO中,设OC=r,则有DO=8﹣r,

根据勾股定理得:(8﹣r)2=r2+42

解得:r=3,

则圆的半径为3.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网