题目内容
如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是( )
A.2 B. C. D.2.5
如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
如图,点A的坐标为(-1,0)点B(a,a),当线段AB最短时,点B的坐标为( )
A.(0,0) B.(,-) C.(-,-) D.(-,-)
已知二次函数y=x2+bx+c图象的顶点坐标为(1,-4),与y轴交点为A.
(1)求该二次函数的关系式及点A坐标;
(2)将该二次函数的图象沿x轴翻折后对应的函数关系式是 .;
(3)若坐标分别为(m,n)、(n,m)的两个不重合的点均在该二次函数图象上,求m+n的值.
(4)若该二次函数与x轴负半轴交于点B,C为函数图象上的一点,D为x轴上一点,当以A、B、C、D为顶点的四边形是平行四边形时,请直接写出该平行四边形的面积
分解因式:2a2-8b2= .
如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( )
A.32° B.68° C.58° D.60°
(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(3分)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是( )
A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3
(6分)计算:.