搜索
题目内容
如图,
中,
是高,
,
分别是
和
的平分线,它们相交于点
,
,
。求
,
。
试题答案
相关练习册答案
20度,125度
解析
练习册系列答案
智解中考系列答案
中考总复习抢分计划系列答案
中考总复习特别指导系列答案
中考总复习赢在中考系列答案
国华考试中考总动员系列答案
中国历史同步练习册系列答案
中考123基础章节总复习测试卷系列答案
中考123中考复习必备系列答案
中考2号系列答案
中考360系列答案
相关题目
阅读与理解:
三角形的中线的性质:三角形的中线等分三角形的面积,
即如图1,AD是△ABC中BC边上的中线,
则
S
△ABD
=
S
△ACD
=
1
2
S
△ABC
.
理由:∵BD=CD,∴
S
△ABD
=
1
2
BD×AH=
1
2
CD×AH=
S
△ACD
=
1
2
S
△ABC
,
即:等底同高的三角形面积相等.
操作与探索
在如图2至图4中,△ABC的面积为a.
(1)如图2,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S
1
,则S
1
=
(用含a的代数式表示);
(2)如图3,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S
2
,则S
2
=
(用含a的代数式表示),并写出理由;
(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图4).若阴影部分的面积为S
3
,则S
3
=
(用含a的代数式表示).
拓展与应用
如图5,已知四边形ABCD的面积是a,E、F、G、H分别是AB、BC、CD的中点,求图中阴影部分的面积?
如图(1),AD,AE分别是△ABC中BC边上的高和中线,已知AD=5cm,EC=2cm.
(1)求△ABE和△AEC的面积;
(2)通过做题,你能发现什么结论?请说明理由.
(3)根据(2)中的结论,解决下列问题:如图(2),CD是△ABC的中线,DE是△ACD的中线,EF是△ADE的中线,若△AEF的面积为1cm
2
,求△ABC的面积.
如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α-β=30°,求∠DCE的度数.
如图,
中,
是高,
,
分别是
和
的平分线,它们相交于点
,
,
。求
,
。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案