题目内容
【题目】如图.在
中,
,
,
,
是
的中线,
是
上的动点,
是
边上的动点,则
的最小值为__________.
![]()
【答案】![]()
【解析】
作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥
,即可得出答案.
作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,
![]()
∵AB=AC=13,BC=10,AD是BC边上的中线,
∴BD=DC=5,AD⊥BC,AD平分∠BAC,
∴M在AB上,
在Rt△ABD中,由勾股定理得:AD=
=12,
∴S△ABC=
×BC×AD=
×AB×CN,
∴CN=
=
,
∵E关于AD的对称点M,
∴EF=FM,
∴CF+EF=CF+FM=CM,
根据垂线段最短得出:CM≥CN,
即CF+EF≥
,
即CF+EF的最小值是
,
故答案为:
.
练习册系列答案
相关题目