题目内容


如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC.

(1)若AD=3,CG=2,求CD;

(2)若CF=AD+BF,求证:EF=CD.


解答:

(1)解:连BD,如图,

∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC,

∴四边形ABGD为矩形,

∴AD=BG=3,AB=DG,

又∵BH⊥DC,CH=DH,

∴△BDC为等腰三角形,

∴BD=BG+GC=3+2=5,

在Rt△ABD中,AB===4,

∴DG=4,

在Rt△DGC中,

∴DC===2.(2)证明:∵CF=AD+BF,

∴CF=BG+BF,

∴FG+GC=BF+FG+BF,即GC=2BF,

∵EF∥DC,

∴∠BFE=∠GCD,

∴Rt△BEF∽Rt△GDC,

∴EF:DC=BF:GC=1:2,

∴EF=DC.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网