题目内容


如图,⊙M过坐标原点O,分别交两坐标轴于A(1,O),B(0,2)两点,直线CD交x轴于点C(6,0),交y轴于点D(0,3),过点O作直线OF,分别交⊙M于点E,交直线CD于点F.

(1)∠CDO=∠BAO;

(2)求证:OE•OF=OA•OC;

(3)若OE=,试求点F的坐标.


证明:(1)如图:

∵C(6,0),D(0,3),

∴tan∠CDO===2,

∵A(1,O),B(0,2),

cot∠BAO==2,

∴∠CDO=∠BAO,

(2)如图,连接AE,

由(1)知∠CDO=∠BAO,

∴∠OCD=∠OBA,

∵∠OBA=∠OEA,

∴∠OCD=∠OEA,

∴△OCF∽△OEA,

=

∴OE•OF=OA•OC;

(3)由(2)得OE•OF=OA•OC,

∵OA=1,0C=6,OE=

∴OF═==2

设F(x,y)

∴x2+y2=8,

∵直线CD的函数式为:y=﹣x+3

∴组成的方程组为

解得

∴F的坐标为:(2,2)或().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网