题目内容
图中,ABCD是平行四边形,E在AB边上,F在DC边上,G为AF与DE的交点,H为CE与BF的交点.已知,平行四边形ABCD的面积是1,
=
,三角形BHC的面积是
,求三角形ADG的面积.
AE |
EB |
1 |
4 |
1 |
8 |
分析:设出平行四边形的底和高,得出F点的位置,进而用平行四边形的底表示出CF、DF、BE、AE的长度,进而用平行四边形的底和高与三角形ADG的底和高的关系,问题即可得解.
解答:解:设平行四边形ABCD的底为a,高为h,ah=1.
AE=
,BE=
,h=
.
1.计算F点在CD上的位置:
S△BEH=BE×h÷2-S△BCH,
=
a×
-
,
=
;
h1=2×S△BEH÷BE(h1为△BEH之BE边上的高),
=2×
÷
a,
=
;
S△CFH=CF×(h-h1)÷2,
=CF×h÷2-S△BCH,
所以CF×(
-
)÷2=CF×
÷2-
,
CF×
=CF×
-
,
CF×
=
,
CF=
;
DF=DC-CF=
;
2.计算△ADG的面积:
S△ADG=S△ADE-S△AEG,
=AE×h÷2-AE×h2÷2,(h2为△AEG之AE边上的高)
=
×
÷2-
×h2÷2,
=
-
×h2,(1)
S△ADG=S△ADF-S△DFG,
=DF×h÷2-DF×(h-h2)÷2,
=(DF×h2)÷2,
=
×h2÷2,
=
×h2,(2)
(2)代入(1)可得:
×h2=
-
×h2,
×h2=
-
×h2,
h2=
,
S△ADG=
×h2,
=
×
,
=
;
答:△ADG的面积是
.
AE=
a |
5 |
4a |
5 |
1 |
a |
1.计算F点在CD上的位置:
S△BEH=BE×h÷2-S△BCH,
=
4 |
5 |
1 |
2a |
1 |
8 |
=
11 |
40 |
h1=2×S△BEH÷BE(h1为△BEH之BE边上的高),
=2×
11 |
40 |
4 |
5 |
=
55 |
80a |
S△CFH=CF×(h-h1)÷2,
=CF×h÷2-S△BCH,
所以CF×(
1 |
a |
55 |
80a |
1 |
a |
1 |
8 |
CF×
25 |
160a |
80 |
160a |
20 |
160 |
CF×
55 |
160a |
20 |
160 |
CF=
4a |
11 |
DF=DC-CF=
7a |
11 |
2.计算△ADG的面积:
S△ADG=S△ADE-S△AEG,
=AE×h÷2-AE×h2÷2,(h2为△AEG之AE边上的高)
=
a |
5 |
1 |
a |
a |
5 |
=
1 |
10 |
a |
10 |
S△ADG=S△ADF-S△DFG,
=DF×h÷2-DF×(h-h2)÷2,
=(DF×h2)÷2,
=
7a |
11 |
=
7a |
22 |
(2)代入(1)可得:
7a |
22 |
1 |
10 |
a |
10 |
70a |
220 |
22 |
220 |
22a |
220 |
h2=
22 |
92a |
S△ADG=
7a |
22 |
=
7a |
22 |
22 |
92a |
=
7 |
92 |
答:△ADG的面积是
7 |
92 |
点评:此题难度较大,关键是得出平行四边形的底和高与三角形ADG的底和高的关系,问题即可得解.
练习册系列答案
相关题目