题目内容
2
+1.75÷150%-
8
÷[7.5+0.625×(
-1.15)]
(
+
)×23+25÷71
×67.8+54.3÷1
-221×9%
(1-
)+(3-
×2)+(5-
×3)+…+(97-
×49)+(99-
×50)
6 |
7 |
1 |
6 |
8
4 |
5 |
11 |
4 |
(
1 |
69 |
2 |
71 |
9 |
10 |
1 |
9 |
(1-
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
分析:算式(1)可根据加法结合律计算;
算式(2)根据四则混合运算的运算顺序计算即可:先算乘除,再算加减,有括号的要先算括号里面的;
算式(3)可根据乘法分配律及加法结合律计算;
算式(4)可先将式中的54.3÷1
变为54.3×
,221×9%变为22.1×
后,再根据乘法分配律计算;
算式(5)一个数连续减几个数等于减去这几个数的和的减法性质及等差数列的求和公式进行计算:
算式(2)根据四则混合运算的运算顺序计算即可:先算乘除,再算加减,有括号的要先算括号里面的;
算式(3)可根据乘法分配律及加法结合律计算;
算式(4)可先将式中的54.3÷1
1 |
9 |
9 |
10 |
9 |
10 |
算式(5)一个数连续减几个数等于减去这几个数的和的减法性质及等差数列的求和公式进行计算:
解答:解:(1)2
+1.75÷150%-
=2
+
-
,
=2
+(
-
),
=2
+1,
=3
;
(2)8
÷[7.5+0.625×(
-1.15)]
=8
÷[7.5+0.625×(2.75-1.15)],
=8
÷[7.5+0.625×1.6],
=8
÷[7.5+1],
=8.8÷8.5,
=
;
(3)(
+
)×23+25÷71
=
×23+
×23+
;
=
+
+
;
=
+(
+
),
=
+1,
=1
;
(4)
×67.8+54.3÷1
-221×9%
=
×67.8+54.3×
-22.1×
,
=(67.8+54.3-22.1)×
,
=100×
,
=90;
(5)(1-
)+(3-
×2)+(5-
×3)+…+(97-
×49)+(99-
×50)
=1-
+3-
×2+(5-
×3+…+97-
×49+99-
×50;
=(1+3+5+…+99)-(
+
×2+
×3+…+
×50),
=(1+99)×[(99-1)÷2+1]÷2-(
+
×50)×50÷2,
=100×50÷2-(50+1)×
×50÷2,
=2500-51×
×50÷2,
=2500-450,
=2050.
6 |
7 |
1 |
6 |
=2
6 |
7 |
7 |
6 |
1 |
6 |
=2
6 |
7 |
7 |
6 |
1 |
6 |
=2
6 |
7 |
=3
6 |
7 |
(2)8
4 |
5 |
11 |
4 |
=8
4 |
5 |
=8
4 |
5 |
=8
4 |
5 |
=8.8÷8.5,
=
88 |
85 |
(3)(
1 |
69 |
2 |
71 |
=
1 |
69 |
2 |
71 |
25 |
71 |
=
1 |
3 |
46 |
71 |
25 |
71 |
=
1 |
3 |
46 |
71 |
25 |
71 |
=
1 |
3 |
=1
1 |
3 |
(4)
9 |
10 |
1 |
9 |
=
9 |
10 |
9 |
10 |
9 |
10 |
=(67.8+54.3-22.1)×
9 |
10 |
=100×
9 |
10 |
=90;
(5)(1-
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
=1-
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
=(1+3+5+…+99)-(
18 |
51 |
18 |
51 |
18 |
51 |
18 |
51 |
=(1+99)×[(99-1)÷2+1]÷2-(
18 |
51 |
18 |
51 |
=100×50÷2-(50+1)×
18 |
51 |
=2500-51×
18 |
51 |
=2500-450,
=2050.
点评:完成本题要注意分析式中数的成特点及内在联系,然后选择合适的方法进行计算.
练习册系列答案
相关题目