题目内容

如图,4个相同的直角三角形围成了一个正方形,已知a:b=1:2,阴影部分的面积占大正方形面积的
5
9
5
9
分析:根据题意可知,阴影部分的边长等于直角三角形的斜边的长,已知直角三角形两条直角边的比是1:2,大正方形的边长等于两条直角边的和,根据正方形的面积=边长×边长,先求出大正方形的面积,把大正方形的面积看作单位“1”,再求出四个直角三角形占大正方形的几分之几,再用单位“1”减去四个直角三角形占大正方形的几分之几,就求出了中间的正方形的面积占大正方形面积的几分之几.
解答:解:大正方形的边长等于两条直角边的和,即1+2=3;
1-1×2÷2×4÷32
=1-4÷9,
=1-
4
9

=
5
9
点评:此题主要考查正方形面积的计算,解答关键是求出大正方形的面积,把它看作 单位“1”,再求出4个三角形的面积正方形的面积占大正方形面积的几分之几,用单位“1”减4个三角形占大正方形的几分之几即可.由此解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网