题目内容

1
2+
1
3+
1
4+
1
…+
1
2007
+
1
1+
1
1+
1
3+
1
4+
1
…+
1
2007
分析:首先推理出a-1+
1
a
=
a2-a+1
a
,a-2+
1
a-1+
1
a
=a-2+
a
a2-a+1
=
a3-3a2+3a-2
a2-a+1
=
a3+1-(a2-a+1)
a2-a+1
=a-2,于是我们可以得到,
1
2005+
1
2006+
1
2007
=
1
2005
1
2003+
1
2004+
1
2005
=
1
2003
,按理求出所要计算的式子的值.
解答:解:首先推理:a-1+
1
a
=
a2-a+1
a
,a-2+
1
a-1+
1
a
=a-2+
a
a2-a+1
=
a3-3a2+3a-2
a2-a+1
=
a3+1-(a2-a+1)
a2-a+1
=a-2,
于是我们可以得到,
1
2005+
1
2006+
1
2007
=
1
2005
1
2003+
1
2004+
1
2005
=
1
2003
,…,
1
3+
1
4+
1
5
=
1
3
1
2+
1
3
=
3
7
1
1+
1
3
=
3
4
1
1+
3
4
=
4
7

1
2+
1
3+
1
4+
1
…+
1
2007
1
1+
1
1+
1
3+
1
4+
1
…+
1
2007
=
3
7
+
4
7
=1.
点评:本题主要考查有理数无理数的概念与运算的知识点,解答本题的关键是证明a-1+
1
a
=
a2-a+1
a
,a-2+
1
a-1+
1
a
=a-2+
a
a2-a+1
=
a3-3a2+3a-2
a2-a+1
=
a3+1-(a2-a+1)
a2-a+1
=a-2,于是我们可以得到,
1
2005+
1
2006+
1
2007
=
1
2005
1
2003+
1
2004+
1
2005
=
1
2003
,这一步,此题难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网