题目内容
一项工程,甲、乙先合做6天,乙再独做3天,可以完成这项工程的
;如果甲先做9天,甲、乙再合做3天,可以完成这项工程的
.如果单独完成这项工程,甲、乙各需多少天?
2 |
7 |
1 |
3 |
分析:(1)甲、乙合做6天,乙再单独做3天,可以完成这项工程的
.(可以理解为甲做了6天,乙做了9天,完成了
)
(2)如果甲先做9天,甲、乙再合作3天,可以成这项工程的
.(可以理解为甲做了12天,乙做了3天,完成了
)
(3)如果将(1)中的工作都扩大2倍,得:甲做了6×2=12天,乙做了9×2=18天,完成了
×2=
;
(4)将(3)与(2)相比,得到:乙15天完成全部的(
-
),得出乙要15÷(
-
)=63天.
(5)则甲需要:1÷[(
-
×9)÷6]=42天.
2 |
7 |
2 |
7 |
(2)如果甲先做9天,甲、乙再合作3天,可以成这项工程的
1 |
3 |
1 |
3 |
(3)如果将(1)中的工作都扩大2倍,得:甲做了6×2=12天,乙做了9×2=18天,完成了
2 |
7 |
4 |
7 |
(4)将(3)与(2)相比,得到:乙15天完成全部的(
4 |
7 |
1 |
3 |
4 |
7 |
1 |
3 |
(5)则甲需要:1÷[(
2 |
7 |
1 |
63 |
解答:解:乙队:
[(6+3)×2-3]÷(
×2-
)
=(9×2-3)÷(
-
),
=15÷
,
=63(天).
甲队:
1÷[(
-
×9)÷6]
=1÷[(
-
)÷6],
=1÷(
÷6),
=1÷
,
=42(天).
答:如果单独完成这项工程,甲需要42天,乙需要63天.
[(6+3)×2-3]÷(
2 |
7 |
1 |
3 |
=(9×2-3)÷(
4 |
7 |
1 |
3 |
=15÷
5 |
21 |
=63(天).
甲队:
1÷[(
2 |
7 |
1 |
63 |
=1÷[(
2 |
7 |
1 |
7 |
=1÷(
1 |
7 |
=1÷
1 |
42 |
=42(天).
答:如果单独完成这项工程,甲需要42天,乙需要63天.
点评:完成本题要细心分析式中数据,将题目中两个条件结合求出乙的工作时间是完成本题的关键.
练习册系列答案
相关题目