题目内容

如图的图1和图2,(  )选项正确.
 
分析:观察图形可知,图形图1的周长,等于长方形的周长的一半与中间曲线的和,图形图2的周长也等于长方形的周长的一半与中间曲线的和,所以这两个图形的周长相等,据此即可解答.
解答:解:根据题干分析可得图形图1与图形图2的周长都等于长方形的周长的一半与中间曲线的和,
所以它们的周长相等.
故选:A.
点评:此题主要考查了周长的定义及长方形的特征,注意中间的虽然是曲线,但计算周长时也要算入.
练习册系列答案
相关题目

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=________.
(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是________.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=________. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是________厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是________厘米.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网