题目内容
(2008?江东区)等腰三角形的一个内角是50°,另外两个内角可能是
50°
50°
和80°
80°
,也可能是65°
65°
和65°
65°
.分析:由题意可知:可以假设这个内角分别为底角和顶角,再依据三角形的内角和是180度和等腰三角形的底角相等的特点,即可分别计算出两种情况下其他内角的度数.
解答:解:(1)假设这个内角是底角,
则另一个底角也是50°,
顶角为180°-50°×2,
=180°-100°,
=80°;
(2)假设这个内角是顶角,
则每个底角的度数为(180°-50°)÷2,
=130°÷2,
=65°;
故答案为:50°、80°;65°、65°.
则另一个底角也是50°,
顶角为180°-50°×2,
=180°-100°,
=80°;
(2)假设这个内角是顶角,
则每个底角的度数为(180°-50°)÷2,
=130°÷2,
=65°;
故答案为:50°、80°;65°、65°.
点评:解答此题的主要依据是:三角形的内角和是180度和等腰三角形的底角相等的特点,利用假设法,分两种情况求解.
练习册系列答案
相关题目