题目内容
用递等式计算,能简算的简算
2506-10517÷13+14×106
[0.8+0.75×(0.65-0.25)]÷0.01
455×7.6+112÷
+43.3×76
+
+
+…+
.
2506-10517÷13+14×106
[0.8+0.75×(0.65-0.25)]÷0.01
455×7.6+112÷
5 |
38 |
1 |
1 |
1 |
1+2 |
1 |
1+2+3 |
1 |
1+2+3+…+50 |
分析:(1)、(2)按照先算乘除,再算加减,有括号的先算括号里面的运算顺序计算;
(3)用乘法分配律简算;
(4)因为:(1+2+…+n)=n(n+1)÷2,那么:
=
=2(
-
),由此求解.
(3)用乘法分配律简算;
(4)因为:(1+2+…+n)=n(n+1)÷2,那么:
1 |
1+2+…+n |
1 |
[n(n+1)÷2] |
1 |
n |
1 |
n+1 |
解答:解:(1)2506-10517÷13+14×106,
=2506-809+1484,
=1697+1484,
=3181;
(2)[0.8+0.75×(0.65-0.25)]÷0.01,
=[0.8+0.75×0.4]÷0.01,
=[0.8+0.3]÷0.01,
=1.1÷0.01,
=110;
(3)455×7.6+112÷
+43.3×76,
=455×7.6+112×7.6+433×7.6,
=(455+112+433)×7.6,
=1000×7.6,
=7600;
(4)
+
+
+…+
,
=1+2×(
-
+
-
+
+…+
-
),
=1+2×(
-
),
=1+
,
=
.
=2506-809+1484,
=1697+1484,
=3181;
(2)[0.8+0.75×(0.65-0.25)]÷0.01,
=[0.8+0.75×0.4]÷0.01,
=[0.8+0.3]÷0.01,
=1.1÷0.01,
=110;
(3)455×7.6+112÷
5 |
38 |
=455×7.6+112×7.6+433×7.6,
=(455+112+433)×7.6,
=1000×7.6,
=7600;
(4)
1 |
1 |
1 |
1+2 |
1 |
1+2+3 |
1 |
1+2+3+…+50 |
=1+2×(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
50 |
1 |
51 |
=1+2×(
1 |
2 |
1 |
51 |
=1+
49 |
51 |
=
100 |
51 |
点评:第(4)题较复杂,先找出规律,再根据规律化简求解.
练习册系列答案
相关题目