题目内容
在一个正方形里画一个最大的圆,圆的面积是正方形面积的
- A.
- B.
- C.
- D.π
C
分析:设正方形的边长为2,则正方形内最大的圆的直径就是2,由此利用正方形和圆的面积公式解答即可.
解答:设正方形的边长为2,则正方形内最大的圆的直径就是2,
则正方形的面积是:2×2=4;
圆的面积是:π
=π;
所以圆的面积是正方形的面积的:π÷4=
.
故选:C.
点评:抓住正方形内最大圆的特点,设出正方形的边长,从而得出圆的半径,利用它们的面积公式解答.
分析:设正方形的边长为2,则正方形内最大的圆的直径就是2,由此利用正方形和圆的面积公式解答即可.
解答:设正方形的边长为2,则正方形内最大的圆的直径就是2,
则正方形的面积是:2×2=4;
圆的面积是:π
![](http://thumb.zyjl.cn/pic5/latex/95288.png)
所以圆的面积是正方形的面积的:π÷4=
![](http://thumb.zyjl.cn/pic5/latex/197.png)
故选:C.
点评:抓住正方形内最大圆的特点,设出正方形的边长,从而得出圆的半径,利用它们的面积公式解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目