题目内容
(2012?康县模拟)袋子里装有红、黄、蓝、绿四种顔色的小球各10个,每次取一个,取出绿球的可能性为
,若保证取出的球必须有三个同色的,那至少取出
1 |
4 |
1 |
4 |
9
9
个.分析:(1)摸出绿球的可能性是绿球个数与球的总数之比,由此计算即可.
(2)从最极端情况分析,假设前8个都摸出红、黄、蓝、绿各2个球,再摸1个只能是四种颜色中的一个,进行分析进而得出结论.
(2)从最极端情况分析,假设前8个都摸出红、黄、蓝、绿各2个球,再摸1个只能是四种颜色中的一个,进行分析进而得出结论.
解答:解:(1)取出绿球的可能性为:
10÷(10+10+10+10),
=10÷40,
=
;
答:取出绿球的可能性为
.
(2)2×4+1=9(个),
答:若保证取出的球必须有三个同色的,那至少取出9个.
故答案为:
;9.
10÷(10+10+10+10),
=10÷40,
=
1 |
4 |
答:取出绿球的可能性为
1 |
4 |
(2)2×4+1=9(个),
答:若保证取出的球必须有三个同色的,那至少取出9个.
故答案为:
1 |
4 |
点评:(1)考查了可能性=要求情况数与情况总数之比.
(2)此题属于典型的抽屉原理习题,做题的关键是从最极端情况进行分析,进而通过分析得出问题答案.
(2)此题属于典型的抽屉原理习题,做题的关键是从最极端情况进行分析,进而通过分析得出问题答案.
练习册系列答案
相关题目