2.已知$f(x)=\left\{{\begin{array}{l}{-x(-1<x<0)}\\{{x^2}(0≤x<1)}\\{x(1≤x≤2)}\end{array}}\right.$,求$f(\frac{1}{2})$=( )
| A. | $\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{4}$ |
16.设F1、F2分别是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左,右焦点,P为椭圆上任一点,点M的坐标为(3,3),则|PM|-|PF2|的最小值为( )
| A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |
15.函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在某一个周期内的最低点和最高点坐标为$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,则该函数的解析式为( )
| A. | $f(x)=2sin(2x+\frac{π}{3})$ | B. | $f(x)=2sin(2x-\frac{π}{3})$ | C. | $f(x)=2sin(2x+\frac{π}{6})$ | D. | $f(x)=2sin(2x-\frac{π}{6})$ |
14.命题p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6相交.则?p及?p的真假为( )
| A. | ¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真 | |
| B. | ¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假 | |
| C. | ¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真 | |
| D. | ¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假 |
13.若等比数列前n项和为${S_n}={2^{n+1}}-c$,则c等于( )
0 252891 252899 252905 252909 252915 252917 252921 252927 252929 252935 252941 252945 252947 252951 252957 252959 252965 252969 252971 252975 252977 252981 252983 252985 252986 252987 252989 252990 252991 252993 252995 252999 253001 253005 253007 253011 253017 253019 253025 253029 253031 253035 253041 253047 253049 253055 253059 253061 253067 253071 253077 253085 266669
| A. | 2 | B. | -2 | C. | 1 | D. | 0 |