搜索
(几何证明选讲选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________.
是否存在常数m、n使函数f(x)=(m
2
-1)x
2
+(m-1)x+n+2为奇函数,若有,求出m、n的值?
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
已知关于x的不等式x
2
-mx+n≤0的解集是[-5,1],则实数m+n之值为
A.
-1
B.
-9
C.
-10
D.
-13
设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是________.
已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+3b的取值范围为
A.
B.
C.
(4,+∞)
D.
[4,+∞)
某工厂在试验阶段大量生产一种零件.这种零件有A、B两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为
,有且仅有一项技术指标达标的概率为
.按质量检验规定:两项技术指标都达标的零件为合格品.
(Ⅰ)求一个零件经过检测为合格品的概率;
(Ⅱ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得到
那么在某一时刻,这个公用电话亭里一个人也没有的概率是________.
某中学举办“上海世博会”知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“世博会吉祥物海宝”或“世博会会徽”,要求4人一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中某人一次抽到2张“世博会吉祥物海宝”卡才能获奖,当某人获奖或者盒中卡片抽完时游戏终止.
(Ⅰ)游戏开始之前,一位高中生问:“盒子中有几张‘世博会会徽’卡?”主持人说:“若从盒中任抽2张卡片不都是‘世博会会徽’卡的概率为
”请你回答有几张“世博会会徽”卡呢?
(Ⅱ)在(Ⅰ)的条件下,甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取.用随机变量ξ表示游戏终止时总共抽取的次数(注意,一次抽取的是两张卡片),求ξ的分布列和数学期望.
已知数列{a
n
}中,
.(1)求a
2
,a
3
,a
4
的值;(2)猜想a
n
的表达式,并用数学归纳法加以证明.
0
2259
2267
2273
2277
2283
2285
2289
2295
2297
2303
2309
2313
2315
2319
2325
2327
2333
2337
2339
2343
2345
2349
2351
2353
2354
2355
2357
2358
2359
2361
2363
2367
2369
2373
2375
2379
2385
2387
2393
2397
2399
2403
2409
2415
2417
2423
2427
2429
2435
2439
2445
2453
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案