12. 解:(1)设总厂原来每周制作帐篷千顶,分厂原来每周制作帐篷千顶.
由题意,得······················································································· 3分
解得所以(千顶),(千顶).
答:在赶制帐篷的一周内,总厂、分厂各生产帐篷8千顶、6千顶.····························· 6分
(2)设从(甲市)总厂调配千顶帐篷到灾区的地,则总厂调配到灾区地的帐篷为千顶,(乙市)分厂调配到灾区两地的帐篷分别为千顶.
甲、乙两市所需运送帐篷的车辆总数为辆.······························································· 8分
由题意,得.
即.······················································································ 10分
因为,所以随的增大而减小.
所以,当时,有最小值60.
答:从总厂运送到灾区地帐篷8千顶,从分厂运送到灾区两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆. 12分
11. 解:设生产奥运会标志x套,生产奥运会吉祥物y套.根据题意,得
…………………………………………2分
①×2-②得:5x=10000.
∴ x=2000. ………………………………………………………………6分
把x=2000代入①得:5y=12000.
∴ y=2400.
答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.……8分
10. (1)甲队行进了2小时,乙队行进了2.5小时.
设乙队的速度为x,则甲队为1.5x + 5.
由题意得方程 2.5x +(1.5x + 5)×2 + 1 = 176.
整理得 5.5x = 165, 解得 x = 30.
∴ 1.5x + 5 = 1.5×30 + 5 = 50.
即甲队赶路的速度为50 km∕h,乙队赶路的速度为30 km∕h.
(2)设若由乙队单独施工,需x小时才能完成.
则由题意有 6×()+ 5.5×= 1.
解得 x = 11.
即乙队单独做,需要11小时才能完成任务.
9. 解:(1)设小明他们一共了个成人,个学生,
································································································· 4分
····················································································································· 6分
答:小明他们一共去了7个成人,4个学生.································································ 7分
(2)若按14人购买团体票,则共需(元)
(元).
购买团体票可省24元.····························································································· 3分
8. 解 ∵
由②得,③ ······························································································· 2分
将③代入①,得.解得.代入③,得.
∴原方程组的解为 6分
7. 解:设生产奥运会标志x套,生产奥运会吉祥物y套,得
解得,答略.
6. .解:设原计划每天挖土石方x万立方米,增调人员和设备后每天挖y万立方米················ 1分
可列出方程组:···································································· 5分
解之得:
答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米······ 8分
5.
解:设A种帐篷x顶,B种帐篷y顶,根据题意,列方程组
……………………………………………4分
解,得 ………………………………………………6分
∴ A种帐篷400顶,B种帐篷200顶. ………………………………………7分
4.
3. 解:(1)a=2,b=0.125
(2)图略
(3)设一等奖x人,二等奖y人,依题意得
解得所以他们共获奖金=50×9+30×20=1050元